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Abstract:  

Considered as a focal point in forensic science, the identification of latent fingerprints is based on various factors such as 

nature of noise, contrast, and partial impressions. This study covers the evolution processes behind fingerprint 

enhancement techniques, focusing on hybrid deep learning models utilizing CNN and ViT, along with the attention 

mechanism, to perform direct crime scene-enhanced minutiae extraction. Conventional approaches and rule-based AFIS 

struggle with latent print quality variations. Recent methodological advances include extraction of global and local 

features, image data augmentation, and attention-guided concentration of classification efforts, all yielding robust 

classification across variable fingerprint conditions. The paper also conducts an analysis of enhancement methods, models, 

and datasets, and serves as a roadmap to building robust and scalable fingerprint identification solutions for operational 

forensic use.  

Keywords: Latent Fingerprint, Minutiae Detection, Deep Learning, CNN-ViT Hybrid, Attention Mechanism, Biometric 
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I. INTRODUCTION 

Fingerprint recognition has long been established as a core biometric mode due to its uniqueness, permanency, and 

reliability in establishing identity. It is vital to forensic investigations, border protection, and control systems for entry. 

Usually, fingerprint lands captured under controlled environments tend to be very fine in either rolled or plain impressions. 

On the other hand, the challenge becomes absolutely magnified when such impressions are latent fingerprints-the very left-

behind crime scene. These impressions are usually incomplete, noisy, smudged, and skewed, making it all the more difficult 

for conventional fingerprint recognition systems to extract minutiae points and match them with any degree of reliability. 

 

Fingerprint recognition systems like the AFIS rely mainly on hand-crafted features, which consist mostly of minutiae points 

such as ridge endings and bifurcations. In contrast, such systems are hardly able to successfully operate on low-quality 

features or those having partial prints. Further complicating this is the degradation of the ridge-valley contrast, with other 

factors such as background noise and environmental effects degrading the latent print quality. Traditional filters such as 

Gabor filters, FFTs, and histogram equalizations have been applied for image enhancement and restoration, but are proven 

almost always last when a print is corrupted beyond place. 

 

Deep learning is revitalizing developments in latent fingerprint enhancement and minutiae detection. CNNs are great at 

extracting local features such as ridge structures and pores; however, ViTs can model long-range dependencies and capture 

contextual information at a global scale. Each approach brings its own set of advantages, while also posing its own 

drawbacks. CNNs have limited receptive fields and weakly handle global relationships, while ViTs mostly require huge 

datasets and fall short in fine-grained spatial precision when applied alone. 

 

The study addresses latent fingerprint enhancement approaches, especially dealing with hybrid deep learning frameworks 

for the accurate detection of minutiae. The article aims at discussing the pros and cons of traditional and contemporary 

approaches, highlighting advancements that have appeared in model architecture, and addressing the challenge of datasets. 

In conclusion, it proposes an organization of the current state-of-the-art approaches and offers perspectives for the future 

development of scalable, real-time, and forensic-grade fingerprint recognition systems. Fig. 1 describes enhancing 

fingerprint matching with deep learning. 
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Fig. 1: Enhancing Fingerprint Matching with Deep Learning 

 

A. Deep Learning in Fingerprint Recognition 

 

Deep learning has revolutionized fingerprint recognition by providing powerful methods for modelling intricate fingerprint 

patterns and structures. Contrary to traditional algorithms wherein features are handcrafted, features here are 

discriminatively learned by deep neural networks from the raw input data [18]. CNNs are good at capturing local spatial 

information, such as ridge structures and minutiae, useful in high-resolution fingerprint classification. CNNs, however, 

may have limitation in grasping long-range dependencies and global contexts, especially for partial or latent prints. ViTs, 

conversely, build global relations using self-attention mechanisms, allowing for comprehension of the fingerprint topology 

in a more holistic manner. Coupled with attention modules, these models learn to weigh relevant regions dynamically, thus 

improving classification performance [19]. Fig .2 describes deep learning in fingerprint recognition. 

 

Fig .2: Deep Learning in Fingerprint Recognition 
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II. LITERATURE REVIEW 

Abdul Wahab et al. [1] (2024) uses a GAN-based enhancement technique that integrates information about minutiae 

location and orientation fields to best enhance latent fingerprint clarity and ridge preservation. It is computationally 

expensive and very hard to balance the realism of the fingerprint with accurate feature preservation.  

 

Temirlan Meiramkhanov et al. [2] (2024) Combined CNNs with Gabor filter enhancement techniques to improve 

recognition accuracy on manipulated fingerprint impressions to 94% with the Sokoto Coventry dataset. Low generalization 

capacity across different fingerprint kinds; heavy reliance on dataset-specific tuning. 

 

Milind B. Bhilavade et al. [3] (2024)  Compared matching scores for relatively poor fingerprint images reconstructed by 

conventional minutiae-based methods and deep learning, varying between 23–94% (DL) and 82–99.99% (minutiae-based). 

Deep learning methods performed inconsistently with different types of damage and considering the image quality. 

 

Hongtian Zhao et al. [4] (2024) ResNet with Generalized IoU-based NMS for outlier-resistant minutiae extraction, 

outperforming state-of-the-art methods over the NIST SD4 and FVC2004 datasets. The performance depends on inference 

accuracy, with very large annotated datasets. 

 

Sahar A. El_Rahman et al. [5] (2024) Presented CNN-based fingerprint unimodal and ECG-fingerprint multimodal 

systems, the sequential fusion ones yielding the highest AUC (0.99). High complexity in managing multimodal data and 

training large-scale fusion models. 

 

A. A. Mulay et al. [6] (2024) Used ensemble of minutiae configurations with U-Net and ViT, gaining around 1.7% higher 

accuracy on challenging datasets such as NIST SD302. Slight performance gains with increased model complexity via 

ensemble strategies. 

 

T. Kavitha et al. [7] (2024) Comprises an automated fingerprint recognition system for forensic crime detection with CNNs, 

having an accuracy exceeding 81%.Limited performance due to small data size and availability of better preprocessing 

techniques for noisy inputs. 

 

P. Khare et al. [9] (2024) Introduced YOLO-based fingerprint recognition models trained on 4,000 annotated images, which 

raised mAP@0.5 from 93% to 97.4%. Accuracy depends heavily on annotated data quality; due to small datasets, it is 

difficult to generalize well.  

 

Zexi Jia et al. [9] (2024) Finger Recovery Transformer (FingerRT) is designed to restore degraded or partial prints by 

harnessing the powers of Vision Transformers and enhancement networks. More computationally expensive and sensitive 

to segmentation errors during preprocessing.  

 

S. Kriangkhajorn et al. [10] (2024) A frequency-domain latent print restoration framework using deep learning filter 

predictors was proposed to increase rank-1 identification accuracy. Complicated block partition; performance degrades 

strongly with the initial filter quality and level of degradation. 

 

Z. Pan et al. [11] (2024) Dense Minutia Descriptor was developed by using deep learning concepts to encode 3D minutiae 

patches for precise latent matching. One limitation involved being exhaustive and computationally expensive during 

matching, while also having difficulties with overlapping and noisy backgrounds. 

 

N. Bhargava et al. [12] (2024)  Employed image processing followed by skeletonization in order to form bit-string-encoded 

fingers for easy storage and matching It is not robust to heavy noise and may discriminate against partial and distorted 

inputs. 

 

R. Bano et al. [13] (2024) Approach to AFIS classification proposed by deep learning using features such as hand 

orientation and sweat pore patterns. The approach is far too dependent on publicly available datasets, which might not be 

diverse enough or representative of the true forensic variance. 

 

Yusuf Artan et al. [14] (2024)  Developed a fusion-based local matching technique that integrates handcrafted features 

with deep embeddings for latent print recognition. Increased complexity is brought about by the fusion process, 

contributing to more dependency on various stages of accurate feature extractions and, thus, more overhead for the system. 

 

The study presented by Saket Pateriya et al. [15] (2024) propose the use of the scattering transform with the Shearlet 

Network (SSNet) to extract the fingerprint features with maximum robustness, and then a score-level fusion scheme is used 
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for higher authentication accuracy. May face difficulty adapting to highly distorted or occluded fingerprints in real-time 

environments. 

 

Yuhang Qiu et al. [16] (2024) proposes IFViT, a two-stage framework for accurate and interpretable fingerprint matching. 

It performs dense fingerprint alignment using a Siamese ViT and then extracts fixed-length, interpretable representations 

via retrained ViTs with a fully connected layer. Experiments on public datasets demonstrate improved matching 

performance and interpretability. Depends on large training data and may involve heavy computational resources during 

deployment. 

 

The general analysis of fingerprint verification and forgery detection with deep learning and machine learning techniques, 

by M. Genel, et al. [17] (2024), is facing new security threats such as fake fingerprint attacks. Given the SOCOfing dataset, 

models were implemented under various configurations and hyperparameter settings for performance evaluation. 

Comparative results, showing the pros and cons of each method, enabled the selection of the best-performing models. 

Limited scope in real-time applications and relies on dataset-specific spoofing patterns. 

 

For detecting spoofs in contactless fingerprint systems, which are increasingly being developed because of their convenient 

and hygienic benefits, Kanchana Rajaram et al. [18] (2024) propose CLNet, a deep learning approach. Existing methods 

for spoof detection often work with a limited set of features, resulting in low accuracy. Trained on the newly created S-

CLAF dataset, CLNet achieved accuracy on the order of 99.07%, and it also provided high results on generalization: 

98.32% on LivDet 2015 and 99.38% on the IIT Bombay dataset, bettering the results of the current state-of-the-art 

approaches. Performance may degrade when exposed to unseen spoofing techniques or poor lighting conditions. 

 

H. M. Mishra and fellow analysts in 2024 [19] worked in Minutia-based mapping and Convolutional Neural Networks 

(CNNs), whereby deep learning means go into fingerprint matching to further its accuracy and speed. The uniqueness and 

permanence of fingerprints give these methods a great deal toward being implicated in modern biometric authentication 

and forensic investigations. Some conventional enhancement techniques may be ineffective on extremely noisy or partial 

prints. 

 

A. Nóbrega et al. [20] (2024) provides an interesting possibility to produce more efficient minutiae descriptors for latent 

fingerprint identification, without needing private datasets. Experiments on NIST SD27 confirm an increase in hit rate of 

6.59% over commercial tools, thus validating the strength of self-supervision and data augmentation methods for latent 

fingerprint recognition.Synthetic data may not fully capture real-world latent fingerprint distortions. 

 

 

Abdulrasool Jadaan Abed – et al. [21] (2024) proposed a fingerprint identification approach using deep learning specifically 

geared toward low-quality fingerprint images. Experimental results demonstrate that this approach is more accurate and 

more robust under adverse conditions than conventional local minutia methods. This work stresses that there remains a 

need to innovate in biometric systems and suggests that fusion of multimodal biometrics may improve the performance 

further when coming to real applications. Performance may drop without pre-enhancement or on highly distorted 

fingerprints. 

 

In 2024, X. Guan et al. [22] proposed the PDRNet (Phase-aggregated Dual-branch Registration Network) to allow for 

enhanced dense registration of fingerprints by aligning pairs down to the pixel level. Extensive experiments across different 

datasets show that PDRNet truly meets the state-of-the-art accuracy and robustness paradigm, while still maintaining 

competitive efficiency in fingerprint registration. Complex architecture may hinder real-time deployment or mobile 

implementation. 

 

The list of applications discussed by A. Juneja, et al. [23] (2024) is ever-changing. Recent developments in fingerprint 

recognition reviewed include contactless identification using CNNs. Identification may also follow a hygienic minutiae-

based process. Indoor positioning systems rank individuals against radio signals using ML models: k-NN and SVM series. 

Browser fingerprinting passively recognizes users by identifying unique browser configurations.  

 

D. Mari et al. [24] (2024) carry out the first deeper investigation into the suitability of learning-based image codecs such 

as JPEG-AI for storing fingerprint images, where compression artifacts might affect the extraction of biometric features. 

They do provide a 47.8% BD rate reduction and a +3.97 dB PSNR gain without forfeiting automatic identification accuracy 

and human readability. May still need optimization for edge devices with limited decoding capacity. 

 

B.  GAN-Based Fingerprint Reconstruction and Selective Enhancement 

Manjarini Mallik et al. [25] (2025) proposed VL-GAN to overcome data scarcity as well as labeling errors in fingerprinting-

based indoor localization. They design a novel Label-to-Vector algorithm for converting the location labels into 
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probabilistic distance vectors. The architecture consists of a generator, a discriminator, and a label generator that acts as a 

classifier.  

 

The Dual Residual Network (DRN), proposed by Misaj Sharafudeen et al. [26] (2025), detects artificially synthesized 

biomedical images, focusing upon CT nodules and dermatological lesions. It got near-perfect accuracy for detection 

(98.80% for nodules and 98.97% for lesions), with good sensitivity and specificity.  

 

Dharmalingam Muthusamy et al. [27] (2025) announced a novel LKPR-PGAN method for enhancing latent fingerprint 

images for improved identification accuracy and speed. The system goes through five stages of processing: Laplace 

kernelized filtering, ROI segmentation, piecewise regression, and Progressive GAN. The experimental results show much 

better accuracy and less time needed than the existing techniques. 

 

The authors Zhenzhou Jin et al. [28] (2025) propose the Conditional Generative Diffusion Model (CGDM) for the purpose 

of reconstructing fine-grained Channel Fingerprints from coarse-grained Channel Fingerprints in massive MIMO systems. 

Experimental results witnessed the improvements in reconstruction capability and scale of use across zero-shot 

generalization against methods that came before. 

 

Seyed Rasoul Hosseini et al. [29] (2025) proposed WaFusion, a new framework that attempts to generate realistic morphed 

face images from wavelet decomposition and diffusion models for biometric analysis. The approach becomes the new 

standard for efficient and secure face morph generation. 

 

S. Wu et al. [30] (2025) proposed a new indoor positioning framework combining a Location-Conditioned Variational 

Autoencoder (LCVAE) and a multi-task CNN, namely LCVAE-CNN. The LCVAE refines the RSSI fingerprints through 

dual-stream encoding, geospatial loss, and conditional augmentation to yield better quality data and spatial consistency. 

Comparative tests on benchmark datasets demonstrated higher accuracy than state-of-the-art methods with smaller errors. 

 

The authors T. Xiang et al. [31] (2025) propose a semi-supervised learning approach for reconstructing RSS fingerprinting 

databases termed MoDeFA, which leverages only partially labeled data for retraining, thereby cutting down on the 

expensive site surveys. Extensive experiments on five datasets demonstrated that MoDeFA outperforms the state-of-the-

art algorithms even when only 30% of the data have labels. 

 

Weidi Huang et al. [32] (2025) proposes ADNet, an attribute disentanglement network for the protection of soft-biometric 

privacy under face recognition systems while protecting identity. A control factor enables the level of privacy to be adjusted 

for different scenarios. Experiments show that ADNet performs better than existing methods for controllable multi-attribute 

privacy protection. 

 

In light of data scarcity and poor sample quality in indoor finger-printing, high-quality HDRF fingerprints are generated 

through conditional diffusion model (CDM) based framework proposed by Lyu et al. [33] (2025). A reduction of up to 

16% in positioning error can be achieved when generated fingerprints are used. 

 

Dongdeok Kim et al. [34] (2025) propose an approach named FALoc, a feature-level augmentation framework that 

enhances Wi-Fi fingerprinting-based indoor localization when faced with missing or unreliable RSSI data. Observations 

guide them in intelligently imputing or removing RSSIs, thus improving data quality. Experimental results on two datasets 

demonstrate that FALoc reduces localization error by up to 12.9%, outperforming MLP baselines. 

 

 

Table 1: Deep Learning Approaches for Fingerprint Verification 

Ref No. 

(Author, Year) 

Technique Used Key Features Dataset Used Results Limitations 

Abdul Wahab et 

al. [17] (2024) 

GAN-based 

enhancement 

Optimizes 

minutiae and 

ridge preservation 

Not specified Improved 

fingerprint 

clarity and 

identification 

Scalability, 

stability, and 

standardization 

issues 

Temirlan 

Meiramkhanov 

et al. [18] (2024) 

CNN + Gabor 

filters 

High robustness 

to altered prints, 

hybrid classifiers 

Sokoto 

Coventry 

Achieved 94% 

recognition 

accuracy 

Scalability, 

stability, and 

standardization 

issues 

Milind B 

Bhilavade et al. 

[19] (2024) 

Minutiae & DL-

based 

reconstruction 

Two techniques 

for reconstructing 

poor-quality 

prints 

Not specified Minutiae: 82–

99.99%; DL: 23–

94% accuracy 

DL-based 

performance 

varies; sensitive 

to quality 
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Hongtian Zhao 

et al. [20] (2024) 

ResNet + GIoU-

guided NMS 

End-to-end 

minutiae 

extraction with 

outlier 

suppression 

NIST SD4, 

FVC2004 

Outperforms 

existing minutiae 

extraction 

models 

Scalability, 

stability, and 

standardization 

issues 

Sahar A. 

El_Rahman et 

al. [21]  (2024) 

CNN-based 

multimodal fusion 

Fusion of 

fingerprint & 

ECG; sequential 

and parallel 

strategies 

MIT-BIH, 

FVC2004 

Sequential 

fusion achieved 

AUC of 0.99 

Scalability, 

stability, and 

standardization 

issues 

[41] Manjarini 

Mallik et al. 

(2025) 

VL-GAN 

(Vectored Labeled 

GAN) 

Label-to-Vector 

conversion, 

SRFG strategy, 

Generator-

Discriminator-

Classifier setup 

Not specified Enhanced indoor 

localization data 

generation 

Dataset details 

and cross-

environment 

validation not 

explored 

[42] Misaj 

Sharafudeen et 

al. (2025) 

Dual Residual 

Network (DRN) 

Low-frequency 

fingerprint 

analysis, 

Gradient-based 

interpretability 

CT nodules, 

Dermatological 

lesions datasets 

98.80% & 

98.97% 

detection 

accuracy 

Focused only on 

CT and skin 

images, 

generalization 

unclear 

[43] 

Dharmalingam 

Muthusamy et 

al. (2025) 

LKPR-PGAN Laplace filtering, 

Piecewise 

regression, ROI 

segmentation, 

Progressive GAN 

Not specified High minutiae 

accuracy and 

speed 

Dataset info and 

performance 

under noisy 

backgrounds not 

mentioned 

[44] Zhenzhou 

Jin et al. (2025) 

Conditional 

Generative 

Diffusion Model 

(CGDM) 

ELBO 

optimization, 

one-shot pruning, 

knowledge 

distillation 

Massive MIMO 

systems 

High-quality 

reconstruction, 

scalability, zero-

shot 

generalization 

Specific dataset 

names and 

comparison 

metrics not 

detailed 

[45] Seyed 

Rasoul Hosseini 

et al. (2025) 

WaFusion 

(Wavelet + 

Diffusion Model) 

Preserves 

structural details, 

Efficient morph 

generation 

FERET, FRGC, 

FRLL, WVU 

Twin 

State-of-the-art 

APCER, 

BPCER, EER 

metrics 

Limited to face 

morphing; cross-

modality 

application not 

discussed 

[46] S. Wu et al. 

(2025) 

LCVAE-CNN Dual-stream 

encoder, 

Geospatial loss, 

Multi-task CNN 

Indoor 

localization 

datasets 

Improved floor 

classification & 

coordinate 

regression 

Dependency on 

labeled data; 

scalability to 

large-scale areas 

untested 

[47] T. Xiang et 

al. (2025) 

MoDeFA (Semi-

supervised 

learning) 

Deep regression, 

Self-attention 

denoising 

Five RSS 

datasets 

Effective with 

only 30% 

labeled data 

Performance with 

real-time data not 

explored 

[48] Weidi 

Huang et al. 

(2025) 

ADNet (Attribute 

Disentanglement) 

ADM, 

Controllable 

privacy levels, 

Perturbed image 

generation 

Face datasets 

with attributes 

Better privacy 

protection with 

preserved 

identity 

Focused on soft-

biometric privacy 

only 

[49] Z. Lyu et al. 

(2025) 

Conditional 

Diffusion Model 

(CDM) 

HDRF synthesis, 

Mahalanobis 

distance for 

sample selection 

Indoor 

positioning 

system datasets 

16% reduction in 

localization error 

Assumes stable 

environment for 

HDRF generation 

[50] Dongdeok 

Kim et al. 

(2025) 

FALoc (Feature-

level 

augmentation) 

Bipartite graph, 

Variational Graph 

Autoencoder 

(VGAE) 

Two indoor 

localization 

datasets 

12.9% 

localization error 

reduction 

May be sensitive 

to large missing 

data ratios 

 

III. CHARACTERISTICS AND CHALLENGES OF LATENT FINGERPRINTS 

 

Latent fingerprints are created when inadvertent friction ridge impressions are deposited on a surface by natural secretions 

from the hand. Unlike rolled or plain prints taken in a controlled environment, latent prints are usually partial, smudged, 
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or degraded by forces applying thereto, so to speak, during uncontrolled acquisition. Such prints, in particular, are either 

invisible or faint to see with the naked eyes and require some sort of enhancement in order to be analyzed. Their forensic 

value lies in them being the most common type of fingerprint to be found at crime scenes, thus being of utmost importance 

for biometric identification and criminal investigations. Still, the very nature of their formation and the quality of their 

capture makes the extraction of reliable features, mainly minutiae points that are key for matching and identification, a 

tremendous challenge. 

 

Several distortions and noise factors affect the quality of latent fingerprints. Typical issues are smudging; overlap of prints; 

prints being deposited by varying, often inappropriate, stuffs of pressure; small incomplete ridge pattern; degradation of 

fingerprint by nature in the fingerprint powder environment like dust moisture, etc.; whereas these corrupt feature promote 

noise and artifacts to obstruct ridge flows, complicate the orientation field estimation, and hinder minutiae detection. 

Background clutter and surface curvature may likewise result in false features masking the timely marking of the ridge and 

leading to an equal bad enhancement result capable of increasing false match rates. 

 

The complexity and variability of latent fingerprints make traditional acquisition and preprocessing methods inadequate. 

Histogram equalization, Gabor filtering, FFT-based enhancement all work well for high-quality, rolled prints but are less 

friendly when applied to noisy, partial, and distorted latent impressions. These methods are usually quite rigid, relying on 

predefined rules and handcrafted filters that are not adaptable enough to the variations found among print conditions. 

Furthermore, segmentation errors during preprocessing can lead to the loss of valuable regions or the inclusion of irrelevant 

background areas. Consequently, traditional pipelines are often unable to prepare latent prints well enough to yield accurate 

minutiae detection and subsequent identification and thus utilize more robust, learning-based approaches. 

 

IV. Deep Learning for Latent Fingerprint Enhancement 

 

The deep learning paradigm has thereby ushered in novel means for latent fingerprint enhancement, giving rise to data-

driven approaches that are designed to meet the challenges of low-quality, partial, and noisy fingerprint impressions. 

Among the most popular architectures, Convolutional Neural Networks (CNNs) stand out, given their ability to learn 

hierarchical feature representations straight from raw fingerprint images. CNN-based approaches extract ridge patterns 

through convolutional operations, suppress undesired background noise, and enhance visibility of important details such 

as ridge endings and bifurcations. These models have shown greater effectiveness in learning local features and are 

generally used in joint frameworks for enhancement and minutiae extraction. Still, CNNs face limitations in grasping long-

range dependencies; hence, their ability to model the global ridge structure in degraded latent prints may remain greatly 

restricted. 

 

Thus, in order to regain some of these functionalities, GANs and autoencoders have been exploited in the restoration and 

enhancement of fingerprints. GANs contain two competing networks called the generator and discriminator, which produce 

very realistic fingerprint images. In latent fingerprint enhancement, GANs will be trained to generate clean ridge patterns 

that closely resemble those in a high-quality rolled print while discarding noise and distortions. Autoencoders work by 

learning how to compress and reconstruct fingerprint images, capturing the essential features in the encoding phase and 

restoring them during decoding. The variants, such as denoising autoencoders, have proven to be effective in aiding ridge 

structure enhancement from noisy inputs, thus suitable for latent fingerprint preprocessing. 

 

Further hybrid deep architectures find mingling with various fine properties of a few models. CNNs allowed by Vision 

Transformers (ViTs) or attention mechanisms are thus well suited for the preservation of local details and global context 

modeling and enhancement with improved performance. Transfer learning is another take with some pre-trained models 

on large image sets fine-tuned for fingerprint-specific tasks. Such helps lessening the scarcity of annotated latent fingerprint 

data while speeding up convergence with no compromise on performance. Putting it all together, these deep learning 

methods factor in a shift from a handcrafted enhancement pipeline toward intelligent, scalable, and robust systems that can 

be used in real-world forensic and biometric applications. 

V. Minutiae Detection Methods 

Minutiae detection constitutes a vital step in fingerprint recognition systems that concentrate on individual ridge details 

like ridge endings and bifurcations from more enhanced images of fingerprints. After the latent fingerprint has first been 

preprocessed and enhanced (usually by the aid of deep learning models such as CNNs, GANs, or autoencoders), it is then 

time to apply minutiae algorithms for extracting those fine-grained features required for matching and identification. In 

this stage, basically, thinning reduces ridge structures to a thin one-pixel width, while then various topological patterns 

corresponding to minutiae points are detected. Certain conventional rule-based methods use well-defined heuristics and 

morphological operations in detecting minutiae from binarized and skeletonized images. These methods are, therefore, 

simple and interpretable. On the other hand, married to image quality, they are highly sensitive to distortions and noise, 

thereby greatly spawning spurious minutiae or even missing real ones, especially when dealing with latent prints where 

clarity is poor. 
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Contrary to traditional techniques, these learning-based approaches use deep neural networks to examine images directly 

for minutiae from either grayscale or enhanced images without explicit thinning or binarization. Being trained on annotated 

fingerprint datasets, these models learn strong representations of ridge flow and minutiae patterns even under difficult 

circumstances of partial, noisy, or smudged prints. The new advancements in the architecture such as ResNet, U-Net, and 

Vision Transformer have been recently considered beneficial in enforcing spatial dependencies and false detections 

suppressions. The learning-based methods may also support the end-to-end pipeline in which minutiae detection is 

combined with enhancement and segmentation, leading to a better accuracy and consistency of the larger system. 

Minutiae detection techniques are assessed for effectiveness using performance measures like Precision (minutiae correctly 

identified versus all minutiae detected), Recall (minutiae correctly detected versus all real minutiae), and Equal Error Rate 

(EER), which balances false acceptance and false rejection rates; others might consider FAR (False Acceptance Rate) and 

FRR (False Rejection Rate) so that the reliability of the system can be determined. Values for precision and recall must be 

very high so that minutiae can be detected correctly and with minimum false positives or missed recognition; this is 

important for real-life applications in biometric verification matching or forensics. 

VI. Applications in Forensics and Biometric Systems 

The forensic world and biometric systems need latent fingerprint enhancement and minutiae detection for accurate suspect 

identification, identity verification, and the creation of criminal databases. These methods improve the operation of an 

Automated Fingerprint Identification System (AFIS) for secure authentication in numerous security-sensitive applications. 

 

A. Integration with AFIS and Criminal Databases  

Latent fingerprint enhancement forms the nucleus of an enhanced Automated Fingerprint Identification System that 

matches captured prints against largescale criminal or civil databases. High-quality minutiae extraction doubles up to help 

match algorithms work faster and its accuracy enhance when interfacing with improper or partial latent prints collected at 

crime scenes. Enhancement through the use of deep learning methods, by means of reducing false matches, leads to better 

interoperability with national and international databases like FBI's IAFIS or INTERPOL systems. It fortifies law 

enforcement agencies' abilities to link suspects to several crimes and cold cases and establish identities across jurisdictions, 

relying on standardized and certified biometric evidence. 

 

B. Use in Mobile Biometric Authentication 

With the mobile origin of biometrics, latent fingerprint enhancement techniques are being tailored to vehicular real-time 

biometric authentication in immersed environments. Mobile fingerprint sensors allowed a print noisy or partial disturbed 

by changing lights or motion blur or even dry skin, which makes enhancement and minutiae extraction algorithms a must 

to be robust. Recently, deep learning models with CNN and lightweight-GAN architectures have been optimized for mobile 

deployment to guarantee quick processing without compromising accuracy. This combination allows enhanced security of 

mobile payments and unlocking devices and hence promotes biometric access in remote and resource-constrained sites for 

verifying applications. 

 

C. Real-World Deployments 

There are latent fingerprint enhancement deployments in forensic labs and security agencies worldwide. In the USA, latent 

print enhancement tools, used in tandem with the NGI (Next Generation Identification) system, are considered to enhance 

matching efficiency to the suspect more accurately. Automated systems for latent fingerprint analysis have been used in 

crime investigations by law enforcement agencies in the UK and India, using enhanced detection of fingerprint minutiae 

to aid fast and accurate results. Mobile AFIS units are utilized in border control and remote identity verification. These 

installations speak to the practicality, scalability, and game-changing potential of deep-learning-based latent fingerprint 

analysis in forensic and biometric scenarios. 

 

VII. CONCLUSION 

Numerous challenges are presented during the analysis of latent fingerprints due to distortion, partial impressions, and 

environmental noise. Traditional methods and stand-alone deep learning models have thus been unable to provide 

consistent and accurate minutiae extraction under such conditions. This review informs us that hybrid architectures in 

which CNNs extract local details while ViTs operate on global contexts-are being further improved in classification 

performance with attention mechanisms. Such systems improve robustness and interpretability while also being adapted to 

different qualities of inputs and sensor modalities. In addition, taking care of dataset issues by means of augmentation also 

supports improving generalization of models. All of those improvements essentially constitute a great leap toward stable 

and scalable latent fingerprint recognition systems for forensic and biometric applications. 
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